Prizes¶
-
1st: USD1,000
-
2nd: USD500
Top 10 participants will get an opportunity to present at the PAIP 2021 workshop which is
endorsed by MICCAI on 01, OCT. 2021¶
Top 10 participants will be able to join the joint paper of this challenge.¶
Participation¶
- Every challenge participant agrees to use the provided data only in the scope of the DATA USE AND CONFIDENTIALITY AGREEMENT for access to data.
- For training the network, no external data is allowed except the official dataset provided in this challenge and pre-trained models using the ImageNet database such as VGG16, InceptionV3, ResNet, etc.
- Every challenge participant agrees not to make more than one account for downloading data and submitting the results.
- After the release of the validation dataset, challenge participants may upload output results of their learning models as described in the submission guidelines of the challenge before the deadline including a summary of their own learning model. By submitting the participant’s results, every challenge participant confirms that their work is original and only includes material that they own or have permission from the rightful owner to use.
- By submitting the results to this challenge, participants understand and agree to include those results for the method comparison. This comparison will be used to prepare a joint publication in which the writing process will be led by the challenge organizer(s). First and last authorship position will correspond to the challenge organizer(s), and each participating team will have at least one contributing co-author in the author list.
- Every challenge member agrees that the decisions of the challenge committee will be final and binding all matters related to this challenge. If there is any change to data, schedule, instructions of participation, or these rules, the registered participants will be notified to the email addresses they provided when they are registered.
- If an unforeseen or unexpected event (including, but not limited to: someone cheating; a virus, bug, or catastrophic event corrupting data or the submission platform; someone discovering a flaw in the data or modalities of the challenge) that cannot be reasonably anticipated or controlled, (also referred to as force majeure) affects the fairness and/or integrity of this challenge, the committee reserve the right to cancel, change or suspend this challenge. This right is reserved whether the event is due to human or technical error.
- Computer “hacking” is unlawful. If any participant attempts to compromise the integrity or the legitimate operation of the challenge by hacking or by cheating or committing fraud in any way, the committee may seek damages from him/her to the fullest extent permitted by law. ✔Datasets
- Data characteristics
Original scanned images in SVS format will be provided for Training, Validation and¶
Test data. The number of datasets are as below.¶
Dataset (Colon/Prostate/Pancreas)¶
> Training Data: 150 WSIs (50/50/50)¶
>Validation Data: 30 WSIs (10/10/10)¶
> Test Data: 60 WSIs (20/20/20)¶
* Scanned by the Aperio AT2 at 20X magnification¶
* All whole slide images were stained by hematoxylin and eosin.¶
* Annotations will be provided for the training set only.¶
* All cases were randomly selected.¶
* Test datasets include cases without tumor as well.¶
- Annotations
The ground truth data in XML format will be provided for Training data only.¶
Expert pathologists manually annotated and there are 4 layers for the annotations.¶
- Layer 1: nerve without tumor (all nerves were annotated in the box)
- Layer 2: perineural invasion junction
- Layer 3: tumor without nerve
- Layer 4: non-tumor without nerve
- Cohort
Patients who were histologically diagnosed with ductal adenocarcinoma or adenocarcinoma¶
of colorectum, prostate and pancreas. Scanned image data of resected tumor tissues of the¶
colon, prostate and pancreas diagnosed at SNUH, SNUBH and SMG-SNU BMC from January¶
2005 to June 2019 will be provided. All personal labels in scanned images were removed in¶
order to protect privacy.¶
- Context information
1. Case number: randomly applied number after removing the labeling of the original specimen.¶
2. Pathological information: organ (colon, prostate and pancreas), histology (adenocarcinoma)¶
3. Additional clinicopathological data are not provided.¶
Submission¶
- All of individuals, teams and each member should submit the data use agreement in advance. (If not, your submissions will not be accepted.)
- Participants should submit their results in a zipped file with the requested supplementary file.
- Multiple submissions are allowed.
- Please refer the Evaluation for the assessment metrics and evaluation steps.
Please move to submit page and get more details about relevant phases.